
Leap to Petascale

Developing Developer Tools
TotalView and Blue Gene/Q

Ed Hinkel,
Sr Sales Engineer

Rogue Wave Software
May 23 2012

Agenda

•  Who is Rogue Wave?
•  Early Blue Gene Days with TotalView
•  Blue Gene/Q Advancements
•  Techniques for Debugging Challenges
•  What's New with TotalView

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

Who is Rogue Wave Software?
Solution Portfolio

| Copyright © 2012 Rogue Wave Software | All Rights Reserved 2

Enterprise C++
Development

Parallel,
Data-intensive
 Applications

IMSL

SourcePro C++

PV-WAVE

TotalView

MemoryScape

ThreadSpotter

Visualization

Early Blue Gene
Days with
TotalView

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

TotalView Blue Gene Support

•  TotalView involvement started in 2003 on BG/L

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

IBM/TV BG/L development system

Gotta love that yellow duct tape!

TotalView Blue Gene/L Support

•  Support for Blue Gene/L since 2005
•  Debugging interfaces developed via close

collaboration with IBM (CIOD)
•  Used on DOE/NNSA/LLNL's Blue Gene/L system

containing 212 K cores
–  Heap memory debugging support added
–  Blue Gene/L scaling and performance tuning project
–  TotalView has debugged jobs as large as

32,768 processes

Blue Gene/L work facilitated Blue Gene/P support
 | Copyright © 2012 Rogue Wave Software | All Rights Reserved

TotalView Blue Gene/P Support

•  Continued close collaboration with IBM
•  Currently running on several BG/P installations in Germany,

France, the UK, and the US.
•  Support for shared libraries, threads, and OpenMP
•  TotalView has debugged jobs as large as 32,768
•  Active workshop participation through the development

–  ANL’s ALCF INCITE Performance Workshop
–  Jülich’s Blue Gene/P Porting, Tuning, and Scaling Workshops

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

TotalView Blue Gene/Q Support

•  Porting TotalView began
in June 2011

•  Access to Q32 at IBM
began in August

•  Basic debugging
operations in October

•  Used in Synthetic
Workload Testing in
December

•  Fully functional in
March 2012

IBM’s Q32

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

TotalView Blue Gene/Q Support (cont)

•  Thanks to the ongoing collaboration with IBM
and the BG Kernel Team, early access versions
of TotalView for BG/Q isavailable

•  Argonne National Laboratory
•  Lawrence Livermore National Laboratory

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

Blue Gene/Q
Advancements

with
TotalView

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

TotalView on BG/Q Support

•  BG/Q TotalView is as functional as BG/P TotalView
–  MPI, OpenMP, pthreads, hybrid MPI+threads
–  C, C++, Fortran, assembler; IBM and GNU compilers
–  Basics: source code, variables, breakpoints, watchpoints, stacks, single

stepping, read/write memory/registers, conditional breakpoints, etc.
–  Memory debugging, message queues, binary core files, etc.

•  PLUS, features unique to BG/Q TotalView
–  QPX (floating point) instruction set and register model
–  Fast compiled conditional breakpoints and watchpoints
–  Asynchronous thread control

•  Working with IBM on debugging interfaces for TM/SE regions
–  TM == transactional memory; SE == speculative execution

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

Advanced TotalView Features on BG/Q

•  Asynchronous thread control
–  A feature on Linux, and other TotalView platforms, ported to BG/Q
–  Allows you to individually control the execution of threads
–  Run and halt individual threads
–  Single-step a group of threads in lockstep
–  Hold and release the execution of individual threads
–  Create stop-thread and thread barrier breakpoints

•  Fast compiled conditional breakpoints and watchpoints
–  A feature on AIX and other TotalView platforms, ported to BG/Q
–  Conditional breakpoints and watchpoints execute in as little as 7 µsecs
–  Conditional expressions are compiled and dynamically patched into the

process
–  Evaluation is performed by the triggering thread, in parallel

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

Blue Gene Code Development Tools Interface (CDTI)

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

Hierarchical infrastructure components are
distributed throughout the system

Tool Challenges

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

One rack of BG/Q:
1K CNs, 16K Cores,

64K HW Threads

A “generous”
128:1 CN:ION
ratio: 8 IONs

Application
P/T count from

1K/64K+ to 64K/64K+

A “beefy” FEN
P7, 3 GHz+, 32 GB+

Tree

Tool
Daemons

Tool FE Tool CPs

Compared to the size of target
application, there’s not much

“room” for the tool!

Overcoming High CN:ION Ratios

•  On BG/Q, at a given ratio, on each IO node, tool daemons may
be responsible for up to

•  But each IO node has
–  1.6 GHz A2 17 core processor (not too swift)
–  16 GB (limited physical memory)

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

CN:ION Processes Threads
64:1 4,096 20,480

128:1 8,192 40,960
256:1 16,384 81,920
512:1 32,768 163,840

Where to put the “weight” of the debugger?

•  Most of the “weight” of the debugger is in the symbol table
•  Real-world applications are huge and complex
•  A recently analyzed mission critical application revealed

–  1.5 million function definitions
–  16 million line number definitions
–  DWARF symbol information in excess of 2 GB
–  100s or 1000 of shared libraries

•  You don’t want to be big in the back end!

•  And nothing too compute intensive either

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

TotalView’s Architecture

•  Extremely lightweight back-end daemon processes
–  Small footprint plus a few hundred bytes per CN process or thread
–  Each daemon can handle thousands of processes and threads
–  The daemons do not store the symbol table!

•  The “weight” of the debugger is on the front-end node
•  Symbol tables are indexed and stored on the FEN

–  Debugger has exactly one copy of the symbol table for each image file
–  Symbol tables are shared across all processes and thread
–  Aggregate memory consumption is minimal

•  Well suited to Blue Gene!

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

•  Process and threads counts per IO node are still high!

•  What to do about that?

•  “Divide and conquer”
–  Place a small number of daemons on the ION
–  We do have 17 cores we can use

•  Unlike CIOD on BG/L&P, CDTI on BG/Q can operate in parallel
–  There’s one CDTI debug channel per compute node

There’s still the high P/T count per IO node problem

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

Solution: TotalView/MRNet Trees
on the IO Nodes

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

0-7

8-15

16-23

24-31

32-39

40-47

48-55

56-63

64-71

72-79

80-87

88-95

96-103

104-111

112-119

120-127

tvdsvr0

tvdsrv1

tvdsvr2

tvdsvr3

tvdsvr4

tvdsvr5

tvdsvr6

tvdsvr7

tvdsvr8

tvdsvr9

tvdsvr10

tvdsvr11

tvdsvr12

tvdsvr13

tvdsvr14

tvdsvr15

MRNet
CP

MRNet
Tree

128 CNs 1 ION

16 daemons run in
parallel sharing the
process/thread load

The MRNet
Commnode Process

connects the daemons
to the rest of the tree

tvdsvr

1 C
DT

I c
ha

nn
el

pe
r C

N

Instead of one
daemon managing

all 128 CNs

TotalView on BG/Q Support

•  BG/Q TotalView is as functional as BG/P TotalView
–  MPI, OpenMP, pthreads, hybrid MPI+threads
–  C, C++, Fortran, assembler; IBM and GNU compilers
–  Basics: source code, variables, breakpoints, watchpoints, stacks, single

stepping, read/write memory/registers, conditional breakpoints, static/dynamic
executables, etc.

–  Memory debugging, message queues, binary core files, etc.
•  PLUS, advanced BG/Q TotalView features

–  QPX (floating point) instruction set and register model
–  Fast compiled conditional breakpoints and watchpoints
–  Asynchronous thread control

•  Working with IBM on debug interfaces for TM/SE regions
–  TM == transactional memory; SE == speculative execution

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

Advanced BG/Q TotalView Features

•  Asynchronous thread control
–  A TotalView feature on Linux and other platforms, ported to BG/Q
–  Allows you to individually control the execution of threads
–  Run and halt individual threads
–  Single-step a group of threads in lockstep
–  Hold and release the execution of individual threads
–  Create stop-thread and thread barrier breakpoints

•  Fast compiled conditional breakpoints and watchpoints
–  A TotalView feature on AIX and other platforms, ported to BG/Q
–  Conditional breakpoints and watchpoints execute

in as little as 7 µsecs
–  Conditional expressions are compiled and dynamically patched into the

process
–  Evaluation is performed in parallel by the triggering thread

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

TotalView Availability

•  TotalView on Blue Gene/Q Today
–  LLNL has it up and running on rzuseq, and is using it to debug

applications.
–  IBM is using it internally for debugging and testing.
–  It's installed on IBM's Blue Gene On Demand Center Q32 (if anyone has

access to that system).

•  TotalView On Blue Gene at Argonne
–  1024 Tokens (BG/P)
–  Research license is available with 65,536 tokens

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

TotalView on VEAS!

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

TotalView on VEAS!

Techniques for
Debugging
Challenges

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

What is TotalView?

A comprehensive debugging solution for !
demanding parallel and multi-core applications!

25

•  Wide compiler & platform
support
•  C, C++, Fortran 77 & 90, UPC
•  Unix, Linux, OS X

•  Handles Concurrency
•  Multi-threaded Debugging
•  Multi-process Debugging

•  Integrated Memory Debugging
•  Reverse Debugging available
•  Supports Multiple Usage Models

•  Powerful and Easy GUI – Highly Graphical
•  CLI for Scripting
•  Long Distance Remote Debugging
•  Unattended Batch Debugging

Debugging Complex Codes

•  Mechanize
•  Minimize
•  Visualize
•  … and Don’t Forget the Memory

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

| Copyright © 2010 Rogue Wave Software | All Rights Reserved 27

Mechanize
Extended Automation Capabilities

Automated Debugging

TVscript
•  Non-Interactive Batch Debugging –

–  Work in the “main” batch queue
–  Don’t have to baby-sit job waiting on it to run
–  Use scripting to perform checks that would be tedious to do by hand
–  Verification through automated processes (nightly build and test)

TTF and C++View
•  Automatic Transformation of Data –

–  Simplify interactive (and scripted) debugging
–  Perform validation/sanity checking of large datasets
–  Comparative debugging
–  Allows you to focus on troubleshooting your program

| Copyright © 2010 Rogue Wave Software | All Rights Reserved

29

•  Run multiple debugging sessions without the need for recompiling, unlike with printf
•  TVscript syntax:

 tvscript [options] [filename] [-a program_args]
•  More complex actions-to-events are possible, utilizing TCL within a CLI file
•  TVscript lets you define what events to act on, and what actions to take

Non-Interactive Batch Debugging with TVscript

Typical Events
•  Action_point
•  Any_memory_event
•  Guard_corruption error

Typical Actions
•  Display_backtrace [-level level-num]
•  List_leaks
•  Save_memory
•  Print [-slice {slice_exp] {variable | exp}

TVscript uses a simple, Event/Action interface

| Copyright © 2010 Rogue Wave Software | All Rights Reserved

Unattended Debugging with Tvscript

!

!

!

!!
! Print!
!!
! Process:!
! ./server (Debugger Process ID: 1, System ID: 12110)!
! Thread:!
! Debugger ID: 1.1, System ID: 3083946656!
! Time Stamp:!
! 06-26-2008 14:04:09!
! Triggered from event:!
! actionpoint!
! Results:!
! foreign_addr = {!
! sin_family = 0x0002 (2)!
! sin_port = 0x1fb6 (8118)!
! sin_addr = {!
! s_addr = 0x6658a8c0 (1717086400)!
! }!
! sin_zero = ""!
! } !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 Example
The following tells tvscript to report the contents of the foreign_addr

structure each time the program gets to line 85
-create_actionpoint "#85=>print foreign_addr”

Typical output sample with tvscript:

Creating Type Transformations

| Copyright © 2010 Rogue Wave Software | All Rights Reserved 31

Customize your own Transformations

In $HOME/.tvdrc:
::TV::TTF::RTF::build_struct_transform {
 name {^class x1$}
 members {
 { pmonth { month } }
 { pName { xbase upcast { * pName } } }
 { pStreet { xbase upcast { * pStreet } } }
 { pVoid1 { "$string *" cast v } }
 { pVoid2 { * { "class x2 *" cast q } } }
 }
}
 Meta Language:

{member}
{* expr}
{expr . Expr}
{expr -> expr}
{datatype case expr}
{baseclass upcast expr}

•  C++View is an easy way to customize TotalView’s display of object data.
•  How does it work?

–  User writes short display functions within their program
–  TotalView uses these functions to simplify the display of data when the user explores their

data within that program
–  C++View transforms are easy to define
–  Great for collaborative codes (transforms can be distributed with the program)

•  Benefit: Easier for scientists and developers to work with complex applications

32

C++View

Developers can now write
display and analysis functions
for their C++ classes that are
invoked whenever an object is
inspected interactively in the
debugger.

C++View

33

•  C++View is a simple way for you to define type transformations
–  Simplify complex data
–  Aggregate and summarize
–  Check validity

•  Transforms
–  Type-based
–  Compose-able
–  Automatically

visible
•  Code

–  C++
–  Easy to write
–  Resides

in target
–  Only called by

TotalView

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

Minimize
Reduce the Scope of Effort

| Copyright © 2010 Rogue Wave Software | All Rights Reserved 35

Subset Debugging
With TotalView

36

•  You can be attached to different
subsets at different times through
the run

•  You can attach to a subset, run till
you see trouble and then 'fan out' to
look at more processes if
necessary.

•  This greatly reduces overhead
•  It also reduces license size

requirements

You need not be attached to the entire job

Subset Attach

37

•  Hangs &
Deadlocks

•  Pending
Messages
•  Receives
•  Sends
•  Unexpected

•  Inspect
•  Individual

entries
•  Patterns

Message Queue Graph

38

38

•  Filtering
•  Tags
•  MPI

Communicators
•  Cycle detection

•  Find deadlocks

Message Queue Debugging

Visualize

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

Visualization

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

Visualization

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

Get the big picture – Observe anomalies – Utilize Pattern recognition – Save time!

… And Don’t Forget the Memory!

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

MemoryScape

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

MemoryScape Feature Highlights
• Automatic allocation problem detection
• Heap Graphical View
• Leak detection
• Block painting
• Dangling pointer detection
• Deallocation/reallocation notification
• Memory Corruption Detection - Guard Blocks
• Memory Hoarding
• Memory Comparisons between processes
• Collaboration features

Memory bugs often go undetected until the worst possible time
• Symptoms often surface long after the actual damage is done
• Some only surface after hours or even days of operation
• In many cases, the programs affected are “innocent bystanders”

MemoryScape: Fully Integrated in TotalView
No Source Code or Binary Instrumentation

• Use it with your existing builds
• Programs run nearly full speed
• Low performance overhead
• Low memory overhead • Efficient memory usage

MemoryScape

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

Visualize Your
Program’s

Environment…

What’s Coming
•  Increased Scalability

–  Leveraging TotalView’s Architecture
–  Efficient Use of Cluster Resources

•  Extremely light weight debug agents; Minimal memory footprint
•  More space on the compute nodes for user application code

–  Tree-Based Overlay Network
•  Broadcast of Operations; Aggregation of Events and Data

•  Advanced User Interface
•  New GUI Framework
•  Changes focused on extreme scale debugging

•  CUDA 4.1 now; 4.2 and 5.0 this year
•  Replay Enhancements

–  Record on Demand (in Beta)
–  Replay Debug from Core File

•  OpenACC Support
•  Intel MIC Support

–  Come see a demo at ISC ‘12

| Copyright © 2012 Rogue Wave Software | All Rights Reserved

Developing for Parallel Architectures

| Copyright © 2012 Rogue Wave Software | All Rights Reserved 46

TotalView® •  Code debugging
•  Highly scalable interactive GUI debugger
-  Easy to use -- without sacrificing detail that users need to debug
-  Used from workstations to the largest supercomputers

•  Powerful features for debugging multi-threaded, multi-process, and
MPI parallel programs

•  Compatible with wide variety of compilers across several platforms
and operating systems

•  Memory Debugging
•  Parallel memory analysis and error detection

-  Intuitive for both intensive and infrequent users
•  Easily integrated into the validation process

•  Reverse Debugging
•  Parallel record and deterministic replay within TotalView

•  Users can run their program “backwards” to find bugs

•  Allows straightforward resolution of otherwise stochastic bugs
•  GPU CUDA Debugging

•  Full Hybrid Architecture Support
•  Asynchronous Warp Control
•  Multi-Device and MPI Support

Developing parallel, data-intensive applications is hard.
We make it easier.

www.roguewave.com

